

TIEC3.0 Principal Sponsor All On Energy innovations. Powerful collaborations.

AI HYBRID AGRI DRYER

Names: Justice Esiri, Oluwakorede Joda, Temitope Jinadu

Affiliation: University of Lagos

Proposed Solution

In Nigeria, post-harvest losses affect up to 40% of crops, including cassava and pepper. These losses are primarily due to pests, contamination, and inefficient drying methods, and the lack of access to reliable electricity or affordable mechanical dryers traps farmers in a cycle of food insecurity and income loss. Our AI Hybrid Agri Dryer addresses this challenge by combining biomass and solar energy with AI and IoT technologies to optimize drying conditions for various crops. Designed for off-grid communities, the system offers a modular, low-cost, and intelligent solution that reduces spoilage, enhances food quality, and increases farmer income ensuring better crop preservation while empowering rural communities.

Technical Design

- ☐ **Dual-Chamber Dryer**: High-temperature for tubers, low-temperature for grains/pepper.
- ☐ Energy Source: Hybrid system using a charcoal-fed biomass heater and solar panels for continuous off-grid operation.
- Sensors: DHT22 (Temperature & Humidity), LM35 (Temperature), MQ-2 (Gas & Smoke).
- ☐ Control System: Arduino Uno microcontroller integrated with ESP8266 Wi-Fi module.
- ☐ AI Engine: Recommends drying parameters such as time, airflow, and energy mix tailored to each crop type.
- Output Monitoring: Mobile dashboard for real-time monitoring with SD card data logging for offline access and analysis.
- Structure: Built from locally sourced materials incorporating RG133 blower and FFB0924EHE extractor fans for efficient airflow.

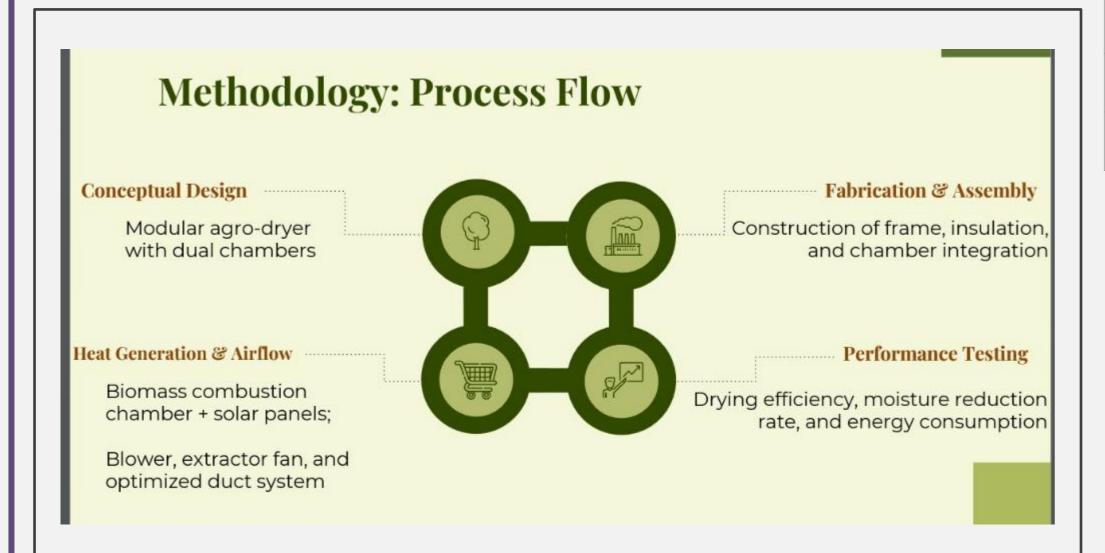


Fig. 1: Methodology Process Flow for Modular Agri Dryer
Development

Acknowledgements

We gratefully acknowledge the invaluable guidance of our supervising lecturer, Dr. Onoroh. We also extend our appreciation to the Faculty of Engineering, University of Lagos, IEEE UNILAG, and the NIMechE UNILAG Student Forum for their support. Special thanks to the Nigeria Energy Forum for organizing this impactful platform.

Economic Feasibility

Costs between №250,000 and №300,000 in pilot, achieves 30–50% faster drying compared to traditional methods, offers 20–30% energy savings over conventional dryers, and can extend crop shelf-life by up to **two times**.

The Agri Dryer is designed using locally sourced materials and powered by renewable energy, the system supports job creation in fabrication, IoT maintenance, and AI support services. It is tailored for use by farmer groups, cooperatives, and rural SMEs, with flexible deployment models including direct sales, rental options, and partnerships to ensure affordability and scalability.

Business Model

- **B2C**: Lease-to-own for farmers ($\frac{1}{2}$ 5,000/month for 12–18 months)
- **B2B**: Bulk sales to cooperatives & Agricultural extension agents
- Support Services: Sensor replacement, AI updates, field training
- Scaling Strategy: Rural hubs for fabrication, maintenance, and data services.

Timeline (Prototype to Pilot)

By leveraging readily available materials and open-source technology, we can move swiftly from design to field implementation. This structured approach ensures the solution can be validated, refined, and scaled efficiently within rural contexts once funding is secured.

PHASE	DURATION
Design & CAD	2 Weeks
Fabrication & Assembly	3 Weeks
IoT & AI Integration	2 Weeks
Field Testing & Feedback	1 - 2 Weeks
Pilot Deployment	1 - 2 Months (after funding)

Target Market

- Smallholder farmers (cassava, pepper, maize, etc.)
- Rural agricultural cooperatives
- Women-led farming groups
- Agritech SMEs
- Post-harvest processing hubs in Nigeria's North-East, Middle Belt

References

- 1. **FAO (2023)**. *Post-harvest loss assessments of root and tuber crops in Sub-Saharan Africa*. Food and Agriculture Organization of the United Nations. https://www.fao.org
- 2. **Nwankwo, C. U., et al. (2020)**. Design and performance evaluation of a hybrid solar-biomass crop dryer for rural farmers in Nigeria. Nigerian Journal of Technological Development, 17(2), 91–98. DOI:10.4314/njtd.v17i2.4
- 3. **Adekomaya, O., et al. (2016)**. *Challenges of drying Agricultural materials in Sub-Saharan Africa—A review*. Renewable and Sustainable Energy Reviews, 61, 258–267. https://doi.org/10.1016/j.rser.2016.04.056
- 4. **Ajibola, O. O., & Yusuf, K. A. (2021)**. Development of a solar-biomass hybrid dryer for drying pepper. Nigerian Journal of Engineering, 28(1), 30–37.
- 5. World Bank (2022). Digital Agriculture Tools in Africa: Bridging the Gap. https://www.worldbank.org
- 6. **Akpan, U. G., et al. (2018)**. Development of a temperature-controlled forced convection solar dryer. Nigerian Journal of Technology, 37(4), 931–938. DOI:10.4314/njt.v37i4.11
- 7. **Nigerian Energy Support Programme (NESP)** (2021). Off-grid Energy Market for Agriculture: Opportunities in Nigeria's Agri Value Chains. https://www.nespenergy.org
- 8. **Kamarudin, M. S., et al. (2022)**. *Internet of Things and Artificial Intelligence for Smart Drying Systems: A Review*. Journal of Cleaner Production, 365, 132641. https://doi.org/10.1016/j.jclepro.2022.132641