

PROVISION OF POTABLE WATER AND EARLY WARNING FOR FLOODING AND POLLUTION IN MAKOKO EEGUN COMMUNITY OF LAGOS, NIGERIA

Name: Stephanie Nzeke Waniko^{1,2}, Samuel Olatunde Popoola¹ Ibironke Olubamise ^{3,} Rose Agbo ³, John Paul Unyimadu ², Nubi Olubunmi ¹, Rod Shelle ¹, Ismail Adejare Ladigbolu ¹, Olakunle Lateef Olaniran¹, Oluwaseun Adedayo Adeleye¹, Falilu Adekunbi¹, and, David omaghomi ²

Affiliation: Nigerian Institute for Oceanography and Marine Research, Eco Restoration Foundation of Nigeria

3UNDP/GEF/SDP-Nigeria

Introduction

Makoko Eegun, community, Lagos, Nigeria, relies on groundwater for drinking and livelihoods but faces pollution from industrial activities, waste, and runoff, causing contamination and health risks. The community is vulnerable to flooding from heavy rains and sea-level rise (Martins and Mafimisebi, 2024). The project aims to improve water quality through testing, treatment, and infrastructure development, as well as community training and early flood warnings. These efforts seek to ensure access to safe water, enhance sanitation, and build resilience against environmental hazards, supporting sustainable growth and public health in this low-lying coastal community.

Objectives

- Improve water quality supply in Makoko-Eegun community.
- •Enhance environmental management practices, and develop mitigation and adaptation strategies for water pollution and flooding risks.
- •Increase public awareness and education on waterborne diseases and sanitation.
- •Drill monitoring wells and potable boreholes, and Perform pretreatment water quality assessments.
- Install water treatment plants and analyze post-treatment water quality, and establish reliable sources of clean water

Fig. 1: Provision of potable borehole, Water level indicator, and alert beeper for flooding monitoring, sensitisation, water treatment plant to the community with renewable energy

Methodology

The community and stakeholders were sensitized on the goal and objectives of the project and training before drilling one 165-feet potable borehole and three 132-feet monitoring boreholes based on geophysical investigations. Water samples from these boreholes were analyzed for physicochemical, microbiological, heavy metals, and organic pollutants to assess water quality. Additionally, early flood monitoring was implemented using water level indicators and alert beepers to enhance early warning capabilities and ensure community safety during flooding.

Results and Discussions

The project has had a remarkable environmental protection and restoration result of access to potable water with over 50% of the community now has safe drinking water due to new boreholes and advanced water treatment system

The installation of a comprehensive water treatment plant with Reverse Osmosis system (1,500 LPH). Flood Resilience in the community through youth training on early flood warnings using automatic water level cables. Improvement in Public Health through Awareness workshops leading to better hygiene and reduced pollution and introduction of circular economy practices especially for plastic waste.

The setup of WHO standard water factory and delivery van as provision source of alternate livelihood through the sales of water

Conclusion and Future Work

Makoko community have a potable water without microbiological contaminants that pose health risks to the pre-treated groundwater in the environment. The vulnerable community have hope of a better environmental protection and climate resilience. However, there is need for continues monitoring of the boreholes, education and training to sustainable this noble project.

References

- [1] Martins, G., Mafimisebi, P. (2024). Impacts of Sewage Wastewater on Groundwater Quality and Health Risk in Makoko, Lagos, Nigeria. Asian Journal of Basic Science & Research, 6(3), 100-110.
- [2] NESREA (2011) National Environmental (Surface and Ground Water Quality) Regulations. 22 p.
- [3] Nigerian Standard for Drinking Water Quality (NSDWQ) (2015) Nigerian Industrial Standard NIS 554, Standard Organization of Nigeria, https://africacheck.org/wp-content/uploads/2018/06/Nigerian-Standard-for-Drinking-Water-Quality-NIS-554-2015.pdf.

Acknowledgements

The authors acknowledge the Global Environmental Facility Small Grants Program (GEF-SGP), and the United Nations Office for Project Services (UNOPS) for the funding support. The Makoko community, Eco Restoration Foundation of Nigeria (ERF) and Nigerian Institute for Oceanography and Marine Research (NIOMR).